Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595062

RESUMO

In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Citocromos f/genética , Citocromos f/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dissulfetos , Citocromos/química , Citocromos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Oxirredução , Heme/genética , Heme/metabolismo , Arabidopsis/metabolismo
2.
Mol Genet Metab ; 140(3): 107670, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542766

RESUMO

Acute hepatic porphyria (AHP) is a group of four rare inherited diseases, each resulting from a deficiency in a distinct enzyme in the heme biosynthetic pathway. Characterized by acute neurovisceral symptoms that may mimic other medical and psychiatric conditions, lack of recognition of the disease often leads to a delay in diagnosis and initiation of effective treatment. Biochemical testing for pathway intermediates that accumulate when the disease is active forms the basis for screening and establishing a diagnosis. Subsequent genetic analysis identifies the pathogenic variant, supporting screening of family members and genetic counseling. Management of AHP involves avoidance of known exogenous and hormonal triggers, symptomatic treatment, and prevention of recurrent attacks. Here we describe six case studies from our own real-world experience to highlight current recommendations and challenges associated with the diagnosis and long-term management of the disease.


Assuntos
Porfobilinogênio , Porfirias Hepáticas , Humanos , Porfirias Hepáticas/diagnóstico , Porfirias Hepáticas/genética , Porfirias Hepáticas/terapia , Sintase do Porfobilinogênio , Heme/genética
3.
Mar Drugs ; 21(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37504934

RESUMO

Due to their unique biochemical and spectroscopic properties, both heme and phycocyanobilin are widely applied in the medical and food industries. Synechocystis sp. PCC 6803 contains both heme and phycocyanin, and is capable of synthesizing phycocyanin using heme as a precursor. The aim of this study was to uncover viable metabolic targets in the porphyrin pathway from Synechocystis sp. PCC 6803 to promote the accumulation of heme and phycocyanin in the recombinant strains of microalgae. A total of 10 genes related to heme synthesis pathway derived from Synechococcus elongatus PCC 7942 and 12 genes related to endogenous heme synthesis were individually overexpressed in strain PCC 6803. The growth rate and pigment content (heme, phycocyanin, chlorophyll a and carotenoids) of 22 recombinant algal strains were characterized. Quantitative real-time PCR technology was used to investigate the molecular mechanisms underlying the changes in physiological indicators in the recombinant algal strains. Among the 22 mutant strains, the mutant overexpressing the haemoglobin gene (glbN) of strain PCC 6803 had the highest heme content, which was 2.5 times higher than the wild type; the mutant overexpressing the gene of strain PCC 7942 (hemF) had the highest phycocyanin content, which was 4.57 times higher than the wild type. Overall, the results suggest that genes in the porphyrin pathway could significantly affect the heme and phycocyanin content in strain PCC 6803. Our study provides novel crucial targets for promoting the accumulation of heme and phycocyanin in cyanobacteria.


Assuntos
Porfirinas , Synechocystis , Ficocianina/genética , Ficocianina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Heme/genética , Clorofila A , Engenharia Genética
4.
Adv Sci (Weinh) ; 10(6): e2205580, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526588

RESUMO

By exploiting versatile P450 enzymes, whole-cell biocatalysis can be performed to synthesize valuable compounds in Escherichia coli. However, the insufficient supply of heme limits the whole-cell P450 biocatalytic activity. Here a strategy for improving intracellular heme biosynthesis to enhance the catalytic efficiencies of P450s is reported. After comparing the effects of improving heme transport and biosynthesis on P450 activities, intracellular heme biosynthesis is optimized through the integrated expression of necessary synthetic genes at proper ratios and the assembly of rate-limiting enzymes using DNA-guided scaffolds. The intracellular heme level is fine-tuned by the combined use of mutated heme-sensitive biosensors and small regulatory RNA systems. The catalytic efficiencies of three different P450s, BM3, sca-2, and CYP105D7, are enhanced through fine-tuning heme biosynthesis for the synthesis of hydroquinone, pravastatin, and 7,3',4'-trihydroxyisoflavone as example products of chemical intermediate, drug, and natural product, respectively. This strategy of fine-tuned heme biosynthesis will be generally useful for developing whole-cell biocatalysts involving hemoproteins.


Assuntos
Sistema Enzimático do Citocromo P-450 , Escherichia coli , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Heme/química , Heme/genética , Heme/metabolismo
5.
PLoS Genet ; 18(9): e1010390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084128

RESUMO

Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.


Assuntos
Heme , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Candida albicans/metabolismo , Heme/genética , Heme/metabolismo , Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Homeostase/genética , Ferro/metabolismo , Peroxidases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(30): e2108245119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858410

RESUMO

Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.


Assuntos
Heme , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Simulação por Computador , Heme/biossíntese , Heme/genética , Hemeproteínas/biossíntese , Hemeproteínas/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 82(15): 2832-2843.e7, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35714613

RESUMO

Iron is the most abundant transition metal essential for numerous cellular processes. Although most mammalian cells acquire iron through transferrin receptors, molecular players of iron utilization under iron restriction are incompletely understood. To address this, we performed metabolism-focused CRISPRa gain-of-function screens, which revealed metabolic limitations under stress conditions. Iron restriction screens identified not only expected members of iron utilization pathways but also SLCO2B1, a poorly characterized membrane carrier. SLCO2B1 expression is sufficient to increase intracellular iron, bypass the essentiality of the transferrin receptor, and enable proliferation under iron restriction. Mechanistically, SLCO2B1 mediates heme analog import in cellular assays. Heme uptake by SLCO2B1 provides sufficient iron for proliferation through heme oxygenases. Notably, SLCO2B1 is predominantly expressed in microglia in the brain, and primary Slco2b1-/- mouse microglia exhibit strong defects in heme analog import. Altogether, our work identifies SLCO2B1 as a microglia-enriched plasma membrane heme importer and provides a genetic platform to identify metabolic limitations under stress conditions.


Assuntos
Heme , Ferro , Transportadores de Ânions Orgânicos/metabolismo , Animais , Transporte Biológico , Heme/genética , Heme/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Ativação Transcricional
8.
Comput Biol Med ; 146: 105544, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504220

RESUMO

Cytochrome c peroxidase (Ccp1) is a mitochondrial heme-containing enzyme that has served for decades as a chemical model to explore the structure function relationship of heme enzymes. Unveiling the impact of its heme pocket residues on the structural behavior, the non-covalent interactions and consequently its peroxidase activity has been a matter of increasing interest. To further probe these roles, we conducted intensive all-atom molecular dynamics simulations on WT and nineteen in-silico generated Ccp1 variants followed by a detailed structural and energetic analysis of H2O2 binding and pairwise interactions. Different structural analysis including RMSD, RMSF, radius of gyration and the number of Hydrogen bonds clearly demonstrate that none of the studied mutants induce a significant structural change relative to the WT behavior. In an excellent agreement with experimental observations, the structural change induced by all the studied mutant systems is found to be very localized only to their surrounding environment. The determined interaction energies between residues and Gibbs binding energies for the WT Ccp1 and the nineteen variants, helped to identify the precise effect of each mutated residues on both the binding of H2O2 and the non-covalent interaction and thus the overall peroxidase activity. The roles of surrounding residues in adopting unique distinctive electronic feature by Ccp1 has been discerned. Our valuable findings have clarified the functions of various residues in Ccp1 and thereby provided novel atomistic insights into its function. Overall, due to the conserved residues of the heme-pocket amongst various peroxidases, the obtained remarks in this work are highly valuable.


Assuntos
Citocromo-c Peroxidase , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Heme/química , Heme/genética , Heme/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Simulação de Dinâmica Molecular , Peroxidase/metabolismo , Peroxidases/química , Peroxidases/genética , Peroxidases/metabolismo , Relação Estrutura-Atividade
9.
J Inorg Biochem ; 228: 111713, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032924

RESUMO

Fur (ferric uptake regulator) is a transcription factor that regulates expression of downstream genes containing a specific Fe2+-binding sequence called the Fur box. In Vibrio cholerae, a Fur box is located upstream of the nik operon, which is responsible for nickel uptake, suggesting that its expression is regulated by Fur. However, there are no reports that Ni2+ induces expression of Fur box genes. Accordingly, we here investigated whether Ni2+ or Fe2+ binds to Fur to regulate expression of the nik operon. We found that Fur binds to the Fur box in the presence of Fe2+ with a dissociation constant (Kd) of 1.2 µM, whereas only non-specific binding was observed in the presence of Ni2+. Thus, Fur-mediated expression of the nik operon is dependent on Fe2+, but not Ni2+. Since most iron in cells exists as heme, we examined the effect of heme on the Fur box binding activity of V. cholerae Fur (VcFur). Addition of heme to the VcFur-Fur box complex induced dissociation of VcFur from the Fur box, indicating that expression of the V. cholerae nik operon is regulated by both iron and heme. Furthermore, VCA1098, a nik operon-encoded protein, bound heme with a Kd of 1.3 µM. Collectively, our results suggest that the V. cholerae nik operon is involved not only in nickel uptake but also in heme uptake, and depends on iron and heme concentrations within bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Ferro/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Polarização de Fluorescência/métodos , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Heme/genética , Óperon/genética , Ligação Proteica , Proteínas Repressoras/genética , Vibrio cholerae/genética
10.
Exp Hematol ; 105: 50-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757171

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic disorder in which patients present a scarcity of erythroid precursors in an otherwise normocellular bone marrow. Most, but not all, patients carry mutations in ribosomal proteins such as RPS19, suggesting that compromised mRNA translation and ribosomal stress are pathogenic mechanisms causing depletion of erythroid precursors. To gain further insight to disease mechanisms in DBA, we performed a custom short hairpin RNA (shRNA) based screen against 750 genes hypothesized to affect DBA pathophysiology. Among the hits were two shRNAs against the erythroid specific heme-regulated eIF2α kinase (HRI), which is a negative regulator of mRNA translation. This study shows that shRNA-mediated HRI silencing or loss of one HRI allele improves expansion of Rps19-deficient erythroid precursors, as well as improves the anemic phenotype in Rps19-deficient animals. We found that Rps19-deficient erythroblasts have elevated levels of unbound intracellular heme, which is normalized by HRI heterozygosity. Additionally, targeting elevated heme levels by treating cells with the heme scavenger alpha-1-microglobulin (A1M), increased proliferation of Rps19-deficient erythroid precursors and decreased heme levels in a disease-specific manner. HRI heterozygosity, but not A1M treatment, also decreased the elevated p53 activity observed in Rps19-deficient cells, indicating that p53 activation is caused by ribosomal stress and aberrant mRNA translation and not heme overload in Rps19-deficiency. Together, these findings suggest that targeting elevated heme levels is a promising new treatment strategy for DBA.


Assuntos
alfa-Globulinas/uso terapêutico , Anemia de Diamond-Blackfan/terapia , Heme/análise , Anemia de Diamond-Blackfan/sangue , Anemia de Diamond-Blackfan/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Inativação Gênica , Terapia Genética , Heme/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/uso terapêutico , Proteínas Ribossômicas/genética
11.
J Inherit Metab Dis ; 45(2): 169-182, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741542

RESUMO

Isolated sulfite oxidase deficiency (ISOD) is a rare recessive and infantile lethal metabolic disorder, which is caused by functional loss of sulfite oxidase (SO) due to mutations of the SUOX gene. SO is a mitochondrially localized molybdenum cofactor (Moco)- and heme-dependent enzyme, which catalyzes the vital oxidation of toxic sulfite to sulfate. Accumulation of sulfite and sulfite-related metabolites such as S-sulfocysteine (SSC) are drivers of severe neurodegeneration leading to early childhood death in the majority of ISOD patients. Full functionality of SO is dependent on correct insertion of the heme cofactor and Moco, which is controlled by a highly orchestrated maturation process. This maturation involves the translation in the cytosol, import into the intermembrane space (IMS) of mitochondria, cleavage of the mitochondrial targeting sequence, and insertion of both cofactors. Moco insertion has proven as the crucial step in this maturation process, which enables the correct folding of the homodimer and traps SO in the IMS. Here, we report on a novel ISOD patient presented at 17 months of age carrying the homozygous mutation NM_001032386.2 (SUOX):c.1097G > A, which results in the expression of SO variant R366H. Our studies show that histidine substitution of Arg366, which is involved in coordination of the Moco-phosphate, causes a severe reduction in Moco insertion efficacy in vitro and in vivo. Expression of R366H in HEK SUOX-/- cells mimics the phenotype of patient's fibroblasts, representing a loss of SO expression and specific activity. Our studies disclose a general paradigm for a kinetic defect in Moco insertion into SO caused by residues involved in Moco coordination resulting in the case of R366H in an attenuated form of ISOD.


Assuntos
Metaloproteínas , Sulfito Oxidase , Erros Inatos do Metabolismo dos Aminoácidos , Pré-Escolar , Coenzimas/genética , Coenzimas/metabolismo , Heme/genética , Humanos , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Pteridinas/metabolismo , Sulfito Oxidase/deficiência , Sulfito Oxidase/genética , Sulfitos
12.
FASEB J ; 36(2): e22099, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34972240

RESUMO

GAPDH, a heme chaperone, has been previously implicated in the incorporation of heme into iNOS and soluble guanylyl cyclase (sGC). Since sGC is critical for myoglobin (Mb) heme-maturation, we investigated the role of GAPDH in the maturation of this globin, as well as hemoglobins α, ß, and γ. Utilizing cell culture systems, we found that overexpression of wild-type GAPDH increased, whereas GAPDH mutants H53A and K227A decreased, the heme content of Mb and Hbα and Hbß. Overexpression of wild-type GAPDH fully recovered the heme-maturation inhibition observed with the GAPDH mutants. Partial rescue was observed by overexpression of sGCß1 but not by overexpression of a sGCΔß1 deletion mutant, which is unable to bind the sGCα1 subunit required to form the active sGCα1ß1 complex. Wild type and mutant GAPDH was found to be associated in a complex with each of the globins and Hsp90. GAPDH at endogenous levels was found to be associated with Mb in differentiating C2C12 myoblasts, and with Hbγ or Hbα in differentiating HiDEP-1 erythroid progenitor cells. Knockdown of GAPDH in C2C12 cells suppressed Mb heme-maturation. GAPDH knockdown in K562 erythroleukemia cells suppressed Hbα and Hbγ heme-maturation as well as Hb dimerization. Globin heme incorporation was not only dependent on elevated sGCα1ß1 heterodimer formation, but also influenced by iron provision and magnitude of expression of GAPDH, d-aminolevulinic acid, and FLVCR1b. Together, our data support an important role for GAPDH in the maturation of myoglobin and γ, ß, and α hemoglobins.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Chaperonas Moleculares/metabolismo , Mioglobina/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Heme/genética , Hemoglobinas/genética , Humanos , Células K562 , Chaperonas Moleculares/genética , Mutação de Sentido Incorreto , Mioglobina/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
13.
Biol Rev Camb Philos Soc ; 97(1): 141-162, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472688

RESUMO

The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.


Assuntos
Eucariotos , Heme , Evolução Biológica , Eucariotos/genética , Heme/genética , Heme/metabolismo , Redes e Vias Metabólicas
14.
FEBS J ; 289(3): 671-681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34544203

RESUMO

Iron homeostasis is essential for both sides of the host-pathogen interface. Restricting access of iron slows bacterial growth while iron is also a necessary cofactor for host immunity. Haem oxygenase 1 (HMOX1) is a critical regulator of iron homeostasis that catalyses the liberation of iron during degradation of haem. It is also a stress-responsive protein that can be rapidly upregulated and confers protection to the host. Although a protective role of HMOX1 has been demonstrated in a variety of diseases, the role of HMOX1 in Mycobacterium tuberculosis infection is equivocal across experiments with different host-pathogen combinations. Here, we use the natural host-pathogen pairing of the zebrafish-Mycobacterium marinum infection platform to study the role of zebrafish haem oxygenase in mycobacterial infection. We identify zebrafish Hmox1a as the relevant functional paralog of mammalian HMOX1 and demonstrate a conserved role for Hmox1a in protecting the host from M. marinum infection. Using genetic and chemical tools, we show zebrafish Hmox1a protects the host against M. marinum infection by reducing infection-induced iron accumulation and ferrostatin-sensitive cell death.


Assuntos
Heme Oxigenase-1/genética , Ferro/metabolismo , Tuberculose/genética , Proteínas de Peixe-Zebra/genética , Animais , Morte Celular/genética , Cicloexilaminas/metabolismo , Modelos Animais de Doenças , Heme/genética , Homeostase , Interações Hospedeiro-Patógeno/genética , Humanos , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fenilenodiaminas/metabolismo , Tuberculose/microbiologia , Peixe-Zebra/genética , Peixe-Zebra/microbiologia
15.
J Biol Chem ; 297(5): 101316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678314

RESUMO

Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone. The extent of PGRMC1 function in cytochrome P450 biology and whether PGRMC1 is also a heme chaperone are unknown. Here, we examined the function of Pgrmc1 in mouse liver using a knockout model and found that Pgrmc1 binds and stabilizes a broad range of cytochromes P450 in a heme-independent manner. Proteomic and transcriptomic studies demonstrated that Pgrmc1 binds more than 13 cytochromes P450 and supports maintenance of cytochrome P450 protein levels posttranscriptionally. In vitro assays confirmed that Pgrmc1 KO livers exhibit reduced cytochrome P450 activity consistent with reduced enzyme levels. Mechanistic studies in cultured cells demonstrated that PGRMC1 stabilizes cytochromes P450 and that binding and stabilization do not require PGRMC1 binding to heme. Importantly, Pgrmc1-dependent stabilization of cytochromes P450 is physiologically relevant, as Pgrmc1 deletion protected mice from acetaminophen-induced liver injury. Finally, evaluation of Y113F mutant Pgrmc1, which lacks the axial heme iron-coordinating hydroxyl group, revealed that proper iron coordination is not required for heme binding, but is required for binding to ferrochelatase, the final enzyme in heme biosynthesis. PGRMC1 was recently identified as the causative mutation in X-linked isolated pediatric cataract formation. Together, these results demonstrate a heme-independent function for PGRMC1 in cytochrome P450 stability that may underlie clinical phenotypes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Substituição de Aminoácidos , Animais , Sistema Enzimático do Citocromo P-450/genética , Estabilidade Enzimática , Células HeLa , Heme/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Receptores de Progesterona/genética
16.
J Biol Chem ; 297(5): 101017, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582890

RESUMO

Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis.


Assuntos
Actinobacteria , Proteínas de Bactérias , Ferroquelatase , Ferro/química , Enxofre/química , Actinobacteria/química , Actinobacteria/genética , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ferroquelatase/química , Ferroquelatase/genética , Heme/química , Heme/genética
17.
Genes (Basel) ; 12(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804186

RESUMO

The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera-the species displaying the broadest range of colors. Three inner shell colors were investigated-red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper-Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.


Assuntos
Pigmentação/genética , Pinctada/genética , Animais , Bilirrubina/genética , Biliverdina/genética , Cor , Perfilação da Expressão Gênica/métodos , Heme/genética , Melaninas/genética , RNA-Seq/métodos , Transcriptoma/genética , Uroporfirinas/genética , Vitamina B 12/genética , Xantina/metabolismo
18.
ACS Synth Biol ; 10(5): 1132-1142, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908255

RESUMO

The early detection of blood in urine (hematuria) can play a crucial role in the treatment of serious diseases (e.g., infections, kidney disease, schistosomiasis, and cancer). Therefore, the development of low-cost portable biosensors for blood detection in urine has become necessary. Here, we designed an ultrasensitive whole-cell bacterial biosensor interfaced with an optoelectronic measurement module for heme detection in urine. Heme is a red blood cells (RBCs) component that is liberated from lysed cells. The bacterial biosensor includes Escherichia coli cells carrying a heme-sensitive synthetic promoter integrated with a luciferase reporter (luxCDABE) from Photorhabdus luminescens. To improve the bacterial biosensor performance, we re-engineered the genetic structure of luxCDABE operon by splitting it into two parts (luxCDE and luxAB). The luxCDE genes were regulated by the heme-sensitive promoter, and the luxAB genes were regulated by either constitutive or inducible promoters. We examined the genetic circuit's performance in synthetic urine diluent supplied with heme and in human urine supplied with lysed blood. Finally, we interfaced the bacterial biosensor with a light detection setup based on a commercial optical measurement single-photon avalanche photodiode (SPAD). The whole-cell biosensor was tested in human urine with lysed blood, demonstrating a low-cost, portable, and easy-to-use hematuria detection with an ON-to-OFF ratio of 6.5-fold for blood levels from 5 × 104 to 5 × 105 RBC per mL of human urine.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hematúria/diagnóstico , Heme/urina , Luciferases Bacterianas/genética , Photorhabdus/enzimologia , Redes Reguladoras de Genes , Genes Bacterianos , Genes Reporter , Heme/genética , Humanos , Medições Luminescentes , Microrganismos Geneticamente Modificados , Óperon , Regiões Promotoras Genéticas
19.
Leukemia ; 35(5): 1451-1462, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33824465

RESUMO

Plasma cells (PCs) play an important role in the adaptive immune system through a continuous production of antibodies. We have demonstrated that PC differentiation can be modeled in vitro using complex multistep culture systems reproducing sequential differentiation process occurring in vivo. Here we present a comprehensive, temporal program of gene expression data encompassing human PC differentiation (PCD) using RNA sequencing (RNA-seq). Our results reveal 6374 differentially expressed genes classified into four temporal gene expression patterns. A stringent pathway enrichment analysis of these gene clusters highlights known pathways but also pathways largely unknown in PCD, including the heme biosynthesis and the glutathione conjugation pathways. Additionally, our analysis revealed numerous novel transcriptional networks with significant stage-specific overexpression and potential importance in PCD, including BATF2, BHLHA15/MIST1, EZH2, WHSC1/MMSET, and BLM. We have experimentally validated a potent role for BLM in regulating cell survival and proliferation during human PCD. Taken together, this RNA-seq analysis of PCD temporal stages helped identify coexpressed gene modules with associated up/downregulated transcription regulator genes that could represent major regulatory nodes for human PC maturation. These data constitute a unique resource of human PCD gene expression programs in support of future studies for understanding the underlying mechanisms that control PCD.


Assuntos
Diferenciação Celular/genética , Plasmócitos/fisiologia , RNA/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica/genética , Glutationa/genética , Heme/genética , Humanos , Análise de Sequência de RNA/métodos , Regulação para Cima/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-33753220

RESUMO

Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.


Assuntos
Crassostrea , Heme , Filogenia , Pigmentação , Animais , Crassostrea/genética , Crassostrea/metabolismo , Heme/biossíntese , Heme/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...